z-logo
open-access-imgOpen Access
Quasi-Hopf algebras and representations of octonions and other quasialgebras
Author(s) -
Florin Panaite,
Freddy Van Oystaeyen
Publication year - 2004
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.1789280
Subject(s) - hopf algebra , endomorphism , mathematics , algebra over a field , pure mathematics , representation theory of hopf algebras , associative property , crossed product , quantum group , product (mathematics) , division algebra , filtered algebra , geometry
Modules over a quasialgebra (here, by quasialgebra we mean a left H-module algebra, where H is a quasi-Hopf algebra), as defined by Albuquerque and Majid, coincide with modules over a certain associative algebra, a quasi-Hopf smash product. As a consequence of this, we get that the category of modules over the octonions is isomorphic to the category of modules over the algebra of 8×8 real matrices. We provide a new approach to the endomorphism quasialgebra associated to a left H-module, which in the finite dimensional case yields the same results as the one of Albuquerque and Majid. We discuss possible definitions as endomorphism quasialgebras for Heisenberg doubles of a finite dimensional quasi-Hopf algebra.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom