z-logo
open-access-imgOpen Access
Complete sets of invariants for dynamical systems that admit a separation of variables
Author(s) -
E. G. Kalnins,
J. M. Kress,
Willard Miller,
G. S. Pogosyan
Publication year - 2002
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.1484540
Subject(s) - separable space , mathematics , hamilton–jacobi equation , hamiltonian (control theory) , separation of variables , canonical coordinates , invariant (physics) , mathematical physics , equations of motion , motion (physics) , constant (computer programming) , standard basis , polynomial basis , mathematical analysis , pure mathematics , quantum mechanics , classical mechanics , physics , partial differential equation , mathematical optimization , computer science , phase space , programming language
Consider a classical Hamiltonian H in n dimensions consisting of a kinetic energy term plus a potential. If the associated Hamilton–Jacobi equation admits an orthogonal separation of variables, then it is possible to generate algorithmically a canonical basis Q, P where P1 = H, P2, ,Pn are the other second-order constants of the motion associated with the separable coordinates, and {Qi,Qj} = {Pi,Pj} = 0, {Qi,Pj} = ij. The 2n–1 functions Q2, ,Qn,P1, ,Pn form a basis for the invariants. We show how to determine for exactly which spaces and potentials the invariant Qj is a polynomial in the original momenta. We shed light on the general question of exactly when the Hamiltonian admits a constant of the motion that is polynomial in the momenta. For n = 2 we go further and consider all cases where the Hamilton–Jacobi equation admits a second-order constant of the motion, not necessarily associated with orthogonal separable coordinates, or even separable coordinates at all. In each of these cases we construct an additional constant of the motion

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom