z-logo
open-access-imgOpen Access
Charge stacking in the half-doped manganites
Author(s) -
Z. Popović,
S. Satpathy
Publication year - 2002
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.1456435
Subject(s) - superexchange , antiferromagnetism , condensed matter physics , zigzag , electronic structure , charge (physics) , charge ordering , spins , doping , kinetic energy , coulomb , stacking , chemistry , materials science , physics , electron , geometry , mathematics , quantum mechanics , organic chemistry
doi:10.1063/1.1456435The stability of the charge-stacked structure vis-à-vis the charge-alternate structure in the half-doped manganites is studied with a model that includes electronic kinetic energy, onsite and intersite Coulomb interactions, the Jahn-Teller energy, and the antiferromagnetic superexchange between the manganese core spins. It is shown that for a single zigzag chain, the electronic kinetic energy stabilizes the standard chain, with Mn3+ at the bridge site and Mn4+ at the corner site, over the “reversed” zigzag chain with the two Mn valences interchanged. The electronic kinetic energy and magnetic interactions stabilize the three-dimensional charge-stacked structure, while a large intersite Coulomb interaction V⩾Vc would stabilize the charge-alternate structure. It is argued that the magnitude of V is small enough that the charge-stacked structure is stabilized in the half-doped manganites such as La1/2Ca1/2MnO3.This work was supported by the Department of Energy under Contract No. DOE FG02-00E0045818

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom