z-logo
open-access-imgOpen Access
A two-chain path integral model of positronium
Author(s) -
L. Larrimore,
Robert N. McFarland,
P. A. Sterne,
Amy L. R. Bug
Publication year - 2000
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.1323979
Subject(s) - positronium , physics , path integral formulation , propagator , kinetic energy , monte carlo method , positron , electron , distribution function , path integral monte carlo , polarizability , particle (ecology) , statistical physics , classical mechanics , quantum mechanics , mathematics , statistics , quantum , oceanography , molecule , geology
We have used a path integral Monte Carlo technique to simulate positronium (Ps) in a cavity. The primitive propagator is used, with a pair of interacting chains representing the positron and electron. We calculate the energy and radial distribution function for Ps enclosed in a hard, spherical cavity, and the polarizability of the model Ps in the presence of an electrostatic field. We find that the positron distribution near the hard wall differs significantly from that for a single particle in a hard cavity. This leads to systematic deviations from predictions of free-volume models which treat Ps as an effective, single particle. A virial-type estimator is used to calculate the kinetic energy of the particle in the presence of hard walls. This estimator is found to be superior to a kinetic-type estimator given the interaction potentials, cavity sizes, and chain lengths considered in the current study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom