z-logo
open-access-imgOpen Access
A deep space power system option based on synergistic power conversion technologies
Author(s) -
Jeffrey G. Schreiber
Publication year - 2000
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.1290948
Subject(s) - stirling engine , nasa deep space network , aerospace engineering , concentrator , propulsion , electrically powered spacecraft propulsion , nuclear power , electric power system , computer science , spacecraft , thermoelectric generator , solar power , mars exploration program , electricity generation , power (physics) , deep space exploration , space exploration , mechanical engineering , engineering , astrobiology , physics , telecommunications , thermoelectric effect , quantum mechanics , nuclear physics , thermodynamics
Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however, the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology was being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors, although intended for use with an isotope heat source, can be combined with other advanced technologies to provide a novel power system for deep space mis...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom