z-logo
open-access-imgOpen Access
Frequentist estimation of cosmological parameters from the MAXIMA‐1 cosmic microwave background anisotropy data
Author(s) -
Abroe M. E.,
Balbi A.,
Borrill J.,
Bunn E. F.,
Hanany S.,
Ferreira P. G.,
Jaffe A. H.,
Lee A. T.,
Olive K. A.,
Rabii B.,
Richards P. L.,
Smoot G. F.,
Stompor R.,
Winant C. D.,
Wu J. H. P.
Publication year - 2002
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1046/j.1365-8711.2002.05383.x
Subject(s) - frequentist inference , physics , cosmic microwave background , credible interval , confidence interval , bayesian probability , statistics , statistic , maxima , confidence distribution , cosmic background radiation , astrophysics , bayesian inference , anisotropy , mathematics , quantum mechanics , performance art , art , art history
We use a frequentist statistical approach to set confidence intervals on the values of cosmological parameters using the MAXIMA‐1 and COBE measurements of the angular power spectrum of the cosmic microwave background. We define a Δ χ 2 statistic, simulate the measurements of MAXIMA‐1 and COBE , determine the probability distribution of the statistic, and use it and the data to set confidence intervals on several cosmological parameters. We compare the frequentist confidence intervals with Bayesian credible regions. The frequentist and Bayesian approaches give best estimates for the parameters that agree within 15 per cent, and confidence interval widths that agree to within 30 per cent. The results also suggest that a frequentist analysis gives slightly broader confidence intervals than a Bayesian analysis. The frequentist analysis gives values of , and , and the Bayesian analysis gives values of , and , all at the 95 per cent confidence level.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here