z-logo
open-access-imgOpen Access
Numerical methods of star formation history measurement and applications to seven dwarf spheroidals
Author(s) -
Dolphin A. E.
Publication year - 2002
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1046/j.1365-8711.2002.05271.x
Subject(s) - physics , astrophysics , star formation , star cluster , astronomy , galaxy , stars
A comprehensive study of the measurement of star formation histories from colour–magnitude diagrams (CMDs) is presented, with an emphasis on a variety of subtle issues involved in the generation of model CMDs and maximum likelihood solution. Among these are the need for a complete sampling of the synthetic CMD, the use of proper statistics for dealing with Poisson‐distributed data (and a demonstration of why χ 2 must not be used), measuring full uncertainties in all reported parameters, quantifying the goodness‐of‐fit, and questions of binning the CMD and incorporating outside information. Several example star formation history measurements are given. Two examples involve synthetic data, in which the input and recovered parameters can be compared to locate possible flaws in the methodology (none were apparent) and measure the accuracy with which ages, metallicities and star formation rates can be recovered. Solutions of the histories of seven Galactic dwarf spheroidal companions (Carina, Draco, Leo I, Leo II, Sagittarius, Sculptor and Ursa Minor) illustrate the ability to measure star formation histories given a variety of conditions – numbers of stars, complexity of star formation history and amount of foreground contamination. Significant measurements of ancient >8 Gyr star formation are made in all seven galaxies. Sculptor, Draco and Ursa Minor appear entirely ancient, while the other systems show varying amounts of younger stars.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here