z-logo
open-access-imgOpen Access
The chemical evolution of the Universe – I. High column density absorbers
Author(s) -
Mathlin G. P.,
Baker A. C.,
Churches D. K.,
Edmunds M. G.
Publication year - 2001
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1046/j.1365-8711.2001.04067.x
Subject(s) - physics , astrophysics , redshift , quasar , star formation , galaxy , metallicity , galaxy formation and evolution , universe , astronomy , observable , chemical evolution , quantum mechanics
We construct a simple, robust model of the chemical evolution of galaxies from high to low redshift, and apply it to published observations of damped Lyman α quasar absorption line systems (DLAs). The elementary model assumes quiescent star formation and isolated galaxies (no interactions, mergers or gas flows). We consider the influence of dust and chemical gradients in the galaxies, and hence explore the selection effects in quasar surveys. We fit individual DLA systems to predict some observable properties of the absorbing galaxies, and also indicate the expected redshift behaviour of chemical element ratios involving nucleosynthetic time delays. Despite its simplicity, our ‘monolithic collapse’ model gives a good account of the distribution and evolution of the metallicity and column density of DLAs, and of the evolution of the global star formation rate and gas density below redshifts z∼3. However, from the comparison of DLA observations with our model, it is clear that star formation rates at higher redshifts (z>3) are enhanced. Galaxy interactions and mergers, and gas flows very probably play a major role.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here