
Pendular seismometer for correcting telescope vibrations
Author(s) -
Tokovinin A.
Publication year - 2000
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1046/j.1365-8711.2000.03538.x
Subject(s) - physics , telescope , seismometer , pendulum , vibration , optics , amplitude , noise (video) , acoustics , astronomy , seismology , geology , artificial intelligence , computer science , image (mathematics)
Vibrations of telescopes can be successfully corrected in real time using a seismometer as an inertial reference. A prototype pendular seismometer is described that is suitable for angular vibration measurements at frequencies from a few tenths to several tens of Hz. The average pendulum position is maintained by a slow servo system that also damps its resonance. The prototype instrument has an rms noise of 3 milliarcsec in the 0–25‐Hz band. It was tested on a 1‐m telescope, and a good agreement of the seismometer signal with the direct optical measurements of the optical axis fluctuations of the telescope was found. A frequency response of the seismometer is studied, an expression for the rms amplitude of residual (uncompensated) vibrations is given. In space applications it is suggested that a pendular mirror in front of the telescope is used as an inertial reference for vibration correction.