
Optical integral field spectroscopy of the extended line emission around six radio‐loud quasars
Author(s) -
Crawford C. S.,
Vanderriest C.
Publication year - 2000
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1046/j.1365-8711.2000.03290.x
Subject(s) - physics , quasar , astrophysics , emission spectrum , redshift , doubly ionized oxygen , ionization , line (geometry) , spectroscopy , x shaped radio galaxy , radio galaxy , spectral line , astronomy , galaxy , ion , geometry , mathematics , quantum mechanics
We present integral field spectroscopy of a small sample of radio‐loud quasars at intermediate redshift (0.26< z <0.60), most of which are associated with large radio sources. All have oxygen line emission extended over tens of kpc, and these nebulae display a diverse range in both morphology and kinematic behaviour. Two quasars show ‘plumes’ of extended line emission, two show a clumpy structure and a further one shows a smooth distribution. There is no clear pattern with regard to the distribution of the ionized gas in relation to the radio source axis; the extended emission‐line regions are found both parallel and perpendicular – and also totally unrelated to – the radio axis. The velocity structure of the ionized gas ranges from essentially static to apparent smooth rotation, and in two cases shows a clear association with the radio source. Given the disparity in properties, the nebulae all show a surprisingly similar ionization state, as measured by the extended lines of [O ii ] λ 3727 and [O iii ] λ 5007. Assuming the gas is ionized by at least the nearby quasar nucleus, we use the emission line ratios to infer a pressure in the ionized gas; in all cases we find it to be at high pressure, suggesting confinement by an external (probably intracluster) medium.