
Galaxy formation and evolution – I. The Padua tree‐sph code ( pd‐sph )
Author(s) -
Carraro Giovanni,
Lia Cesario,
Chiosi Cesare
Publication year - 1998
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1046/j.1365-8711.1998.2970041021.x
Subject(s) - physics , astrophysics , galaxy , stars , supernova , galaxy formation and evolution , star formation , code (set theory) , dark matter , smoothing , set (abstract data type) , computer science , computer vision , programming language
In this paper we report on pd‐sph , the new tree‐sph code developed in Padua. The main features of the code are described and the results of a new and independent series of 1D and 3D tests are shown. The paper is mainly dedicated to the presentation of the code and to the critical discussion of its performance. In particular, great attention is devoted to the convergency analysis. The code is highly adaptive in space and time by means of individual smoothing lengths and individual time‐steps. At present it contains both dark and baryonic matter, this latter in the form of gas and stars, cooling, thermal conduction, star formation, feedback from Type I and II supernovae, stellar winds, and ultraviolet flux from massive stars, and finally chemical enrichment. New cooling rates that depend on the metal abundance of the interstellar medium are employed, and the differences with respect to the standard ones are outlined. Finally, we show the simulation of the dynamical and chemical evolution of a disc‐like galaxy with and without feedback. The code is suitably designed to study in a global fashion the problem of formation and evolution of elliptical galaxies, and in particular to feed a spectrophotometric code from which the integrated spectra, magnitudes and colours (together with their spatial gradients) can be derived.