z-logo
open-access-imgOpen Access
The circumnuclear material in the Galactic Centre: a clue to the accretion process
Author(s) -
Robert H. Sanders
Publication year - 1998
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1046/j.1365-8711.1998.01127.x
Subject(s) - physics , astrophysics , angular momentum , accretion (finance) , protein filament , velocity dispersion , astronomy , active galactic nucleus , star formation , torus , stars , galaxy , classical mechanics , geometry , mathematics , biology , genetics
On the basis of ‘sticky particle’ calculations, it is argued that the gas features observed within 10 pc of the Galactic Centre — the circumnuclear disc (CND) and the ionized gas filaments — as well as the newly formed stars in the inner 1 pc can be understood in terms of tidal capture and disruption of gas clouds on low angular momentum orbits in a potential containing a point mass. The calculations demonstrate that a dissipative component forms a ‘dispersion ring’, an asymmetric elliptical torus precessing counter to the direction of rotation, and that this shape can be maintained for many orbital periods. For a range of plausible initial conditions, such a structure can explain the morphology and kinematics of the CND and of the most conspicuous ionized filament. While forming the dispersion ring, a small cloud with low specific angular momentum is drawn into a long filament which repeatedly collides with itself at high velocity. The compression in strong shocks is likely to lead to star formation even in the near tidal field of the point mass. This process may have general relevance to accretion on to massive black holes in normal and active galactic nuclei.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here