
A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to palaeocontinental reconstruction
Author(s) -
Halls Henry C.,
Li Jianghai,
Davis Don,
Hou Guiting,
Zhang Baoxing,
Qian Xianglin
Publication year - 2000
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1046/j.1365-246x.2000.00231.x
Subject(s) - paleomagnetism , craton , geology , laurentia , zircon , proterozoic , paleontology , remanence , apparent polar wander , precambrian , position (finance) , paleozoic , magnetization , tectonics , physics , finance , quantum mechanics , magnetic field , economics
A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China’s largest dyke swarm, which trends for about 1000 km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U–Pb dating of primary zircon, is 1769.1 ± 2.5 Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D = 36°, I = − 5°, k = 63, α 95 = 4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp = 2°, dm = 4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800 Ma