z-logo
open-access-imgOpen Access
Convection in the Earth’s core driven by lateral variations in the core–mantle boundary heat flux
Author(s) -
Gibbons Steven John,
Gubbins David
Publication year - 2000
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1046/j.1365-246x.2000.00192.x
Subject(s) - geophysics , heat flux , core–mantle boundary , stratification (seeds) , mantle (geology) , geology , convection , mechanics , inner core , convective heat transfer , mantle convection , heat transfer , physics , tectonics , seed dormancy , paleontology , germination , botany , dormancy , subduction , biology
Summary Moving core fluid maintains an isothermal core–mantle boundary (CMB), so lateral variations in the CMB heat flow result from mantle convection. Such variations will drive thermal winds, even if the top of the core is stably stratified. These flows may contribute to the magnetic secular variation and are investigated here using a simple, non‐magnetic numerical model of the core. The results depend on the equatorial symmetry of the boundary heat flux variation. Large‐scale equatorially symmetric ( E S ) heat flux variations at the outer surface of a rapidly rotating spherical shell drive deeply penetrating flows that are strongly suppressed in stratified fluid. Smaller‐scale E S heat flux variations drive flows less dominated by rotation and so less inhibited by stratification. Equatorially anti‐symmetric flux variations drive flows an order of magnitude less energetic than those driven by E S patterns but, due to the nature of the Coriolis force, are less suppressed by stratification. The response of the rotating core fluid to a general CMB heat flow pattern will then depend strongly on the subadiabatic temperature profile. Imposing a lateral heat flux variation linearly related to a model of seismic tomography in the lowermost mantle drives flow in a density stratified fluid that reproduces some features found in flows inverted from geomagnetic data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here