z-logo
open-access-imgOpen Access
A palaeomagnetic study of fracture fills in the Holy Cross Mountains of Central Poland and its application in dating tectonic processes
Author(s) -
Lewandowski Marek
Publication year - 1999
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1046/j.1365-246x.1999.00815.x
Subject(s) - geology , apparent polar wander , paleomagnetism , calcite , devonian , paleontology , carboniferous , polar wander , geomagnetic pole , baltica , late devonian extinction , cretaceous , conglomerate , sedimentary rock , earth's magnetic field , ordovician , physics , structural basin , quantum mechanics , magnetic field
Calcite and sedimentary fills in fractures cutting the Upper Devonian carbonates in the Holy Cross Mountains (HCM) were dated palaeomagnetically by comparison with the apparent polar wander path (APWP). Haematite‐bearing calcite possessed well‐defined components of natural remanent magnetization (NRM), which were preserved under thermal demagnetization to temperatures of approximately 500 °C, when specimens disintegrated. Although not completely demagnetized, some specimens revealed a stable NRM component before destruction, thus making a component analysis possible. Five components were determined using density point distribution and cluster analysis. One has a mean that is similar to the present‐day local geomagnetic vector. The remaining four components yielded palaeomagnetic poles located at: A (70.3°S, 5.5°E), B (71.3°S, 31.2°E), C (48.7°S, 351.0°E, virtual geomagnetic pole), and D (11.6°S, 312.3°E). Antipodal polarities found in the fracture fills, together with dissimilarities in magnetization found in calcite and hosting carbonates, indicate the lack of simultaneous remagnetization, and different times of remanence acquisition for the rocks under comparison. Taking both palaeomagnetically inferred palaeolatitudes and regional tectonics into consideration, a Mesozoic (Cretaceous?) age is estimated for palaeopoles A and B, a Permian age for pole C, and a Carboniferous age for pole D. These age determinations are in line with the calcite ages estimated from isotopic studies. A comparative palaeomagnetic study performed on a well‐dated Upper Devonian neptunian dyke of limestone and a Lower Triassic clastic vein yielded virtual geomagnetic poles (VGPs) close to the APWP for Baltica. Generally, the remanence from fracture fills may be useful for dating related tectonics, karst phenomena and mineralization processes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here