Genome editing for blood disorders: state of the art and recent advances
Author(s) -
Marianna Romito,
Rajeev Rai,
Adrian J. Thrasher,
Alessia Cavazza
Publication year - 2019
Publication title -
emerging topics in life sciences
Language(s) - English
Resource type - Journals
eISSN - 2397-8562
pISSN - 2397-8554
DOI - 10.1042/etls20180147
Subject(s) - genome editing , transcription activator like effector nuclease , zinc finger nuclease , crispr , computational biology , biology , effector , cas9 , genome , gene , nuclease , genetics , immunology
In recent years, tremendous advances have been made in the use of gene editing to precisely engineer the genome. This technology relies on the activity of a wide range of nuclease platforms - such as zinc-finger nucleases, transcription activator-like effector nucleases, and the CRISPR-Cas system - that can cleave and repair specific DNA regions, providing a unique and flexible tool to study gene function and correct disease-causing mutations. Preclinical studies using gene editing to tackle genetic and infectious diseases have highlighted the therapeutic potential of this technology. This review summarizes the progresses made towards the development of gene editing tools for the treatment of haematological disorders and the hurdles that need to be overcome to achieve clinical success.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom