Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders
Author(s) -
Scott J. Hughes,
Alessio Ciulli
Publication year - 2017
Publication title -
essays in biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.351
H-Index - 66
eISSN - 1744-1358
pISSN - 0071-1365
DOI - 10.1042/ebc20170041
Subject(s) - molecular recognition , ternary complex , cooperativity , ternary operation , intramolecular force , chemistry , small molecule , computational biology , protein design , target protein , plasma protein binding , protein data bank , protein ligand , molecule , protein structure , stereochemistry , biology , biochemistry , computer science , enzyme , gene , organic chemistry , programming language
Molecular glues and bivalent inducers of protein degradation (also known as PROTACs) represent a fascinating new modality in pharmacotherapeutics: the potential to knockdown previously thought 'undruggable' targets at sub-stoichiometric concentrations in ways not possible using conventional inhibitors. Mounting evidence suggests these chemical agents, in concert with their target proteins, can be modelled as three-body binding equilibria that can exhibit significant cooperativity as a result of specific ligand-induced molecular recognition. Despite this, many existing drug design and optimization regimens still fixate on binary target engagement, in part due to limited structural data on ternary complexes. Recent crystal structures of protein complexes mediated by degrader molecules, including the first PROTAC ternary complex, underscore the importance of protein-protein interactions and intramolecular contacts to the mode of action of this class of compounds. These discoveries have opened the door to a new paradigm for structure-guided drug design: borrowing surface area and molecular recognition from nature to elicit cellular signalling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom