z-logo
open-access-imgOpen Access
Salt loading decreases urinary excretion and increases intracellular accumulation of uromodulin in stroke-prone spontaneously hypertensive rats
Author(s) -
Sheon Mary,
Philipp Boder,
Giacomo Rossitto,
Lesley Graham,
Kayley Scott,
Arun Flynn,
David Kipgen,
Delyth Graham,
Christian Delles
Publication year - 2021
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20211017
Subject(s) - tamm–horsfall protein , medicine , endocrinology , excretion , urinary system , kidney , blood pressure , distal convoluted tubule , lipocalin , nephron
Uromodulin (UMOD) is the most abundant renal protein secreted into urine by the thick ascending limb (TAL) epithelial cells of the loop of Henle. Genetic studies have demonstrated an association between UMOD risk variants and hypertension. We aimed to dissect the role of dietary salt in renal UMOD excretion in normotension and chronic hypertension. Normotensive Wistar–Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) (n=8/sex/strain) were maintained on 1% NaCl for 3 weeks. A subset of salt-loaded SHRSP was treated with nifedipine. Salt-loading in SHRSP increased blood pressure (ΔSBP 35 ± 5 mmHg, P<0.0001) and kidney injury markers such as kidney injury marker-1 (KIM-1; fold change, FC 3.4; P=0.003), neutrophil gelatinase-associated lipocalin (NGAL; FC, 2.0; P=0.012) and proteinuria. After salt-loading there was a reduction in urinary UMOD excretion in WKY and SHRSP by 26 and 55% respectively, compared with baseline. Nifedipine treatment reduced blood pressure (BP) in SHRSP, however, did not prevent salt-induced reduction in urinary UMOD excretion. In all experiments, changes in urinary UMOD excretion were dissociated from kidney UMOD protein and mRNA levels. Colocalization and ex-vivo studies showed that salt-loading increased intracellular UMOD retention in both WKY and SHRSP. Our study provides novel insights into the interplay among salt, UMOD, and BP. The role of UMOD as a cardiovascular risk marker deserves mechanistic reappraisal and further investigations based on our findings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom