z-logo
open-access-imgOpen Access
Epidermal growth factor signaling through transient receptor potential melastatin 7 cation channel regulates vascular smooth muscle cell function
Author(s) -
Zhiguo Zou,
Francisco J. Rios,
Karla B Neves,
Rhéure Alves-Lopes,
Jiayue Ling,
George S. Baillie,
Xing Gao,
William Fuller,
Lívia L. Camargo,
Thomas Gudermann,
Vladimir Chubanov,
Augusto C. Montezano,
Rhian M. Touyz
Publication year - 2020
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20200827
Subject(s) - trpm7 , vascular smooth muscle , epidermal growth factor , transient receptor potential channel , microbiology and biotechnology , phosphorylation , signal transduction , cell growth , kinase , gefitinib , epidermal growth factor receptor , biology , chemistry , endocrinology , medicine , receptor , biochemistry , smooth muscle
Transient receptor potential (TRP) melastatin 7 (TRPM7) cation channel, a dual-function ion channel/protein kinase, regulates vascular smooth muscle cell (VSMC) Mg2+ homeostasis and mitogenic signaling. Mechanisms regulating vascular growth effects of TRPM7 are unclear, but epidermal growth factor (EGF) may be important because it is a magnesiotropic hormone involved in cellular Mg2+ regulation and VSMC proliferation. Here we sought to determine whether TRPM7 is a downstream target of EGF in VSMCs and if EGF receptor (EGFR) through TRPM7 influences VSMC function. Approach and results: Studies were performed in primary culture VSMCs from rats and humans and vascular tissue from mice deficient in TRPM7 (TRPM7+/Δkinase and TRPM7R/R). EGF increased expression and phosphorylation of TRPM7 and stimulated Mg2+ influx in VSMCs, responses that were attenuated by gefitinib (EGFR inhibitor) and NS8593 (TRPM7 inhibitor). Co-immunoprecipitation (IP) studies, proximity ligation assay (PLA) and live-cell imaging demonstrated interaction of EGFR and TRPM7, which was enhanced by EGF. PP2 (c-Src inhibitor) decreased EGF-induced TRPM7 activation and prevented EGFR-TRPM7 association. EGF-stimulated migration and proliferation of VSMCs were inhibited by gefitinib, PP2, NS8593 and PD98059 (ERK1/2 inhibitor). Phosphorylation of EGFR and ERK1/2 was reduced in VSMCs from TRPM7+/Δkinase mice, which exhibited reduced aortic wall thickness and decreased expression of PCNA and Notch 3, findings recapitulated in TRPM7R/R mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom