z-logo
open-access-imgOpen Access
Using nuclear envelope mutations to explore age-related skeletal muscle weakness
Author(s) -
Edmund Battey,
Matthew J. Stroud,
Julien Ochala
Publication year - 2020
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20190066
Subject(s) - muscular dystrophy , progeria , biology , weakness , muscle weakness , skeletal muscle , muscle disorder , genetics , premature aging , limb girdle muscular dystrophy , mutation , gene , bioinformatics , medicine , endocrinology , anatomy
Skeletal muscle weakness is an important determinant of age-related declines in independence and quality of life but its causes remain unclear. Accelerated ageing syndromes such as Hutchinson-Gilford Progerin Syndrome, caused by mutations in genes encoding nuclear envelope proteins, have been extensively studied to aid our understanding of the normal biological ageing process. Like several other pathologies associated with genetic defects to nuclear envelope proteins including Emery-Dreifuss muscular dystrophy, Limb-Girdle muscular dystrophy and congenital muscular dystrophy, these disorders can lead to severe muscle dysfunction. Here, we first describe the structure and function of nuclear envelope proteins, and then review the mechanisms by which mutations in genes encoding nuclear envelope proteins induce premature ageing diseases and muscle pathologies. In doing so, we highlight the potential importance of such genes in processes leading to skeletal muscle weakness in old age.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom