Urinary glycated uromodulin in diabetic kidney disease
Author(s) -
ChiaChu Chang,
ChenYu Chen,
Ching-Hui Huang,
ChiaLin Wu,
Hung-Ming Wu,
ChiuPing Fang,
Chew-Teng Kor,
Ting-Huan Chen,
Geen-Dong Chang,
Cheng-Chin Kuo,
Hui-Chin Wen,
ChihYang Huang,
Chung-Ho Chang
Publication year - 2017
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20160978
Subject(s) - tamm–horsfall protein , glycation , urine , diabetes mellitus , urinary system , albuminuria , medicine , proteinuria , biomarker , endocrinology , kidney disease , renal function , urology , kidney , chemistry , biochemistry
Advanced glycation end-products (AGEs) form during oxidative stress, which is increased in diabetes mellitus (DM). Uromodulin is a protein with a renal protective effect, and may be subject to glycation. The implications of uromodulin glycation and AGEs in the urine are not understood. Here, immunoprecipitation and liquid chromatography-mass spectrometry identified glycated uromodulin (glcUMOD) in the urine of 62.5% of patients with diabetic kidney disease (DKD), 20.0% of patients with non-diabetic chronic kidney disease (CKD), and no DM patients with normal renal function or healthy control participants; a finding replicated in a larger cohort of 84 patients with CKD in a case-control study (35 with DM, 49 without). Uromodulin forms high molecular weight polymers that associate with microvesicles and exosomes. Differential centrifugation identified uromodulin in the supernatant, microvesicles, and exosomes of the urine of healthy participants, but only in the supernatant of samples from patients with DKD, suggesting that glycation influences uromodulin function. Finally, the diagnostic and prognostic utility of measuring urinary glcUMOD concentration was examined. Urinary glcUMOD concentration was substantially higher in DKD patients than non-diabetic CKD patients. Urinary glcUMOD concentration predicted DKD status, particularly in patients with CKD stages 1-3a aged <65 years and with urine glcUMOD concentration ≥9,000 arbitrary units (AU). Urinary uromodulin is apparently glycated in DKD and forms AGEs, and glcUMOD may serve as a biomarker for DKD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom