z-logo
open-access-imgOpen Access
Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes
Author(s) -
Ruth M. Mackenzie,
Ian P. Salt,
William H. Miller,
Angela Logan,
Hagar Ibrahim,
Andrea Degasperi,
Jane A. Dymott,
Carlene A. Hamilton,
Michael P. Murphy,
Christian Delles,
Anna F. Dominiczak
Publication year - 2012
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20120239
Subject(s) - medicine , endothelium , ampk , endothelial dysfunction , coronary artery disease , reactive oxygen species , endocrinology , oxidative stress , amp activated protein kinase , vasodilation , mitochondrion , protein kinase a , mitochondrial ros , diabetes mellitus , biology , kinase , biochemistry
The aim of the present study was to determine whether the endothelial dysfunction associated with CAD (coronary artery disease) and T2D (Type 2 diabetes mellitus) is concomitant with elevated mtROS (mitochondrial reactive oxygen species) production in the endothelium and establish if this, in turn, regulates the activity of endothelial AMPK (AMP-activated protein kinase). We investigated endothelial function, mtROS production and AMPK activation in saphenous veins from patients with advanced CAD. Endothelium-dependent vasodilation was impaired in patients with CAD and T2D relative to those with CAD alone. Levels of mitochondrial H(2)O(2) and activity of AMPK were significantly elevated in primary HSVECs (human saphenous vein endothelial cells) from patients with CAD and T2D compared with those from patients with CAD alone. Incubation with the mitochondria-targeted antioxidant, MitoQ(10) significantly reduced AMPK activity in HSVECs from patients with CAD and T2D but not in cells from patients with CAD alone. Elevated mtROS production in the endothelium of patients with CAD and T2D increases AMPK activation, supporting a role for the kinase in defence against oxidative stress. Further investigation is required to determine whether pharmacological activators of AMPK will prove beneficial in the attenuation of endothelial dysfunction in patients with CAD and T2D.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom