Regulation of the phosphatase PP2B by protein–protein interactions
Author(s) -
Patrick J. Nygren,
John D. Scott
Publication year - 2016
Publication title -
biochemical society transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.562
H-Index - 144
eISSN - 1470-8752
pISSN - 0300-5127
DOI - 10.1042/bst20160150
Subject(s) - protein kinase a , phosphatase , protein phosphatase 1 , microbiology and biotechnology , protein phosphatase 2 , calcineurin , biology , protein kinase c , phosphorylation , chemistry , medicine , transplantation , surgery
Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex's role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom