z-logo
open-access-imgOpen Access
Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis
Author(s) -
Young M. LEE,
Seungoh LEE,
Eunyoung LEE,
Hyunjin Shin,
Hwa-Sun Hahn,
Wonja Choi,
Wankee KIM
Publication year - 2001
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bj3600549
Subject(s) - mitosis , nuclear matrix , biology , cell fractionation , subcellular localization , kinesin , nuclear localization sequence , microbiology and biotechnology , cytoplasm , cell nucleus , microtubule , dna , genetics , chromatin , membrane
In a previous study, we identified the human counterpart of murine kinesin superfamily member 4 (KIF4), a microtubule-based motor protein [Oh, Hahn, Torrey, Shin, Choi, Lee, Morse and Kim (2000) Biochim. Biophys. Acta 1493, 219-224]. As an initial step to understand the function(s) of human KIF4, its subcellular localization in HeLa cells was examined by using immunocytochemical and subcellular fractionation methods, and it was found that most KIF4 is localized in the nucleus. Since murine KIF4 is known to transport cytoplasmic vesicles, dominant nuclear localization of the human counterpart was somewhat surprising. Subsequent subnuclear fractionation revealed predominant association of KIF4 with the nuclear matrix. These results clearly indicate that human KIF4 is, at least, a nuclear protein. In further confirmation of this conclusion, the hexapeptide PKLRRR (amino acids 773-778) in the molecule was found to function as a nuclear localization signal. During the mitotic phase of the cell cycle, human KIF4 was associated with the chromosomes, suggesting that human KIF4 might be a microtubule-based mitotic motor, with DNA as its cargo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom