z-logo
open-access-imgOpen Access
Inhibitors of serine/threonine phosphatases enhance phosphorylation of the interferon-gamma receptor while selectively attenuating interferon-gamma-induced gene expression in human peripheral-blood monocytes.
Author(s) -
H Luong,
Karen D. Winestock,
D S Finbloom
Publication year - 1994
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bj2990799
Subject(s) - okadaic acid , microbiology and biotechnology , phosphorylation , biology , phosphatase , interferon gamma , signal transduction , gene expression , biochemistry , gene , in vitro
Since many events following ligand-induced receptor clustering are controlled by serine and threonine (Ser/Thr) phosphorylation, we initiated an investigation into the role of Ser/Thr phosphatases in both phosphorylation of the interferon-gamma (IFN-gamma) receptor and IFN gamma-induced gene expression in human peripheral-blood monocytes. Whereas IFN gamma alone did not enhance phosphorylation of the IFN gamma receptor, treatment of monocytes with the Ser/Thr phosphatase inhibitors, okadaic acid and calyculin A, resulted in increased phosphorylation of the IFN gamma receptor. However, when these cells were analysed for IFN gamma-induced IP-10 gene expression, there was profound inhibition. Using three IFN gamma-induced early-response genes, IP-10, the Fc gamma receptor type I (Fc gamma RI) and ISG-54, we found selective sensitivity to pretreatment with okadaic acid and calyculin A. Whereas IFN gamma induction of IP-10 was blocked by both inhibitors, only calyculin A prevented Fc gamma RI-gene expression. Neither inhibitor prevented ISG-54 induction by IFN gamma. IFN-gamma-activated formation of the DNA-binding-protein complex FcRF gamma (which binds to the promoter of the Fc gamma RI gene) remained unaffected by okadaic acid or calyculin A. Therefore these data suggest that Ser/Thr phosphatases have no major part in IFN gamma-initiated signal transduction across the membrane, but selectively control the ultimate transcription of a set of early-response genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom