
A novel horse α-defensin: gene transcription, recombinant expression and characterization of the structure and function
Author(s) -
Oliver Bruhn,
Petra Regenhard,
Matthias Michalek,
Sven Paul,
Christoph Gelhaus,
Sascha Jung,
Georg Thaller,
Rainer Podschun,
Matthias Leippe,
Joachim Grötzinger,
E. Kalm
Publication year - 2007
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bj20070747
Subject(s) - defensin , biology , antimicrobial peptides , antimicrobial , microbiology and biotechnology , escherichia coli , candida albicans , beta defensin , recombinant dna , bacteria , gene , biochemistry , genetics
Defensins are a predominant class of antimicrobial peptides, which act as endogenous antibiotics. Defensins are classified into three distinct sub-families: theta-, beta-, and alpha-defensins. Synthesis of alpha-defensin has been confirmed only in primates and glires to date and is presumably unique for a few tissues, including neutrophils and Paneth cells of the small intestine. Antimicrobial activities of these peptides were shown against a wide variety of microbes including bacteria, fungi, viruses and protozoan parasites. In the present study, we report the characterization of the equine alpha-defensin DEFA (defensin alpha) 1. Transcription analysis revealed that the transcript of the gene is present in the small intestine only. An alignment with known alpha-defensins from primates and glires displayed a homology with Paneth-cell-specific alpha-defensins. DEFA1 was recombinantly expressed in Escherichia coli and subsequently analysed structurally by CD and molecular modelling. To examine the antimicrobial properties, a radial diffusion assay was performed with 12 different micro-organisms and the LD90 (lethal dose killing > or =90% of target organism) and MBC (minimal bactericidal concentration) values were examined. DEFA1 showed an antimicrobial activity against different Gram-positive and Gram-negative bacteria and against the yeast Candida albicans. Using viable bacteria in combination with a membrane-impermeable fluorescent dye, as well as depolarization of liposomes as a minimalistic system, it became evident that membrane permeabilization is at least an essential part of the peptide's mode of action.