z-logo
open-access-imgOpen Access
Statins inhibit the dimerization of β-secretase via both isoprenoid- and cholesterol-mediated mechanisms
Author(s) -
Richard B. Parsons,
Gemma Price,
Joanna K. Farrant,
Daryl Subramaniam,
Jubril Adeagbo-Sheikh,
Brian Austen
Publication year - 2006
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bj20060655
Subject(s) - palmitoylation , cerivastatin , statin , prenylation , hek 293 cells , chemistry , lovastatin , biochemistry , cholesterol , hmg coa reductase , transfection , pharmacology , microbiology and biotechnology , biology , cysteine , enzyme , reductase , pravastatin , gene
We have previously reported that protein lipidation in the form of palmitoylation and farnesylation is critical for the production of Abeta (amyloid beta-peptide), the dimerization of beta-secretase and its trafficking into cholesterol-rich microdomains. As statins influence these lipid modifications in addition to their effects on cholesterol biosynthesis, we have investigated the effects of lovastatin and SIMVA (simvastatin) at a range of concentrations chosen to distinguish different cellular effects on Abeta production and beta-secretase structure and its localization in bHEK cells [HEK-293 cells (human embryonic kidney cells) transfected with the Asp-2 gene plus a polyhistidine coding tag] cells. We have compared the changes brought about by statins with those brought about by the palmitoylation inhibitor cerulenin and the farnesyltransferase inhibitor CVFM (Cys-Val-Phe-Met). The statin-mediated reduction in Abeta production correlated with an inhibition of beta-secretase dimerization into its more active form at all concentrations of statin investigated. These effects were reversed by the administration of mevalonate, showing that these effects were mediated via 3-hydroxy-3-methylglutaryl-CoA-dependent pathways. At low (1 microM) statin concentrations, reduction in Abeta production and inhibition of beta-secretase dimerization were mediated by inhibition of isoprenoid synthesis. At high (>10 microM) concentrations of statins, inhibition of beta-secretase palmitoylation occurred, which we demonstrated to be regulated by intracellular cholesterol levels. There was also a concomitant concentration-dependent change in beta-secretase subcellular trafficking. Significantly, Abeta release from cells was markedly higher at 50 microM SIMVA than at 1 microM, whereas these concentrations resulted in similar reductions in total Abeta production, suggesting that low-dose statins may be more beneficial than high doses for the therapeutic treatment of Alzheimer's disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here