z-logo
open-access-imgOpen Access
Cell Atlas technologies and insights into tissue architecture
Author(s) -
Anna Wilbrey-Clark,
Kenny Roberts,
Sarah A. Teichmann
Publication year - 2020
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bcj20190341
Subject(s) - computational biology , cell function , atlas (anatomy) , living cell , biology , data science , function (biology) , profiling (computer programming) , cell , computer science , bioinformatics , microbiology and biotechnology , genetics , anatomy , operating system
Since Robert Hooke first described the existence of 'cells' in 1665, scientists have sought to identify and further characterise these fundamental units of life. While our understanding of cell location, morphology and function has expanded greatly; our understanding of cell types and states at the molecular level, and how these function within tissue architecture, is still limited. A greater understanding of our cells could revolutionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to identify all cell types at the molecular level, including their physical locations, and to make this reference data openly available to the scientific community. This is made possible by a recent technology revolution: both in single-cell molecular profiling, particularly single-cell RNA sequencing, and in spatially resolved methods for assessing gene and protein expression. Here, we review available and upcoming atlasing technologies, the biological insights gained to date and the promise of this field for the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom