z-logo
open-access-imgOpen Access
Membrane reinforcement in giant hybrid polymer lipid vesicles achieved by controlling the polymer architecture
Author(s) -
Martin Fauquig,
Emmanuel Ibarboure,
JeanFrançois Le Meins
Publication year - 2020
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/d0sm01581d
Subject(s) - vesicle , lipid vesicle , polymer , membrane , materials science , copolymer , polymer science , polymer chemistry , nanotechnology , chemical engineering , chemistry , composite material , engineering , biochemistry
The physical properties of membranes of hybrid polymer lipid vesicles are so far relatively unknown. Since their discovery a decade ago, many studies have aimed to show their great potential in many fields of application, but so far, few systematic studies have been carried out to decipher the relationship between the molecular characteristics of the components (molar mass, chemical nature, and architecture of the copolymer), the membrane structure and its properties. In this work, we study the association of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(dimethylsiloxane)-b-poly(ethylene oxide) (PDMS-b-PEO) diblock copolymers of different molar masses in giant hybrid vesicles and establish a complete phase diagram of the membrane structure. We also measured the mechanical properties of the giant hybrid unilamellar vesicle (GHUV) through micropipette aspiration at different lipid/polymer compositions. Thanks to a previous work using triblock PEO-b-PDMS-b-PEO copolymers, we were able to reveal the effect of the architecture of the block copolymer on membrane structure and properties. Besides, the association of diblock copolymers PDMS-b-PEO and POPC leads to the formation of hybrid vesicles with unprecedented membrane toughness.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom