z-logo
open-access-imgOpen Access
Stability of a directional Marangoni flow
Author(s) -
Corentin Trégouët,
Arnaud SaintJalmes
Publication year - 2020
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/d0sm01347a
Subject(s) - marangoni effect , mechanics , surface tension , flow (mathematics) , marangoni number , jet (fluid) , free surface , wavelength , physics , materials science , classical mechanics , optics , convection , thermodynamics
Marangoni flows result from surface-tension gradients, and these flows occur over finite distances on the surface, but the subsequent secondary flows can be observed on much larger lengthscales. These flows play major roles in various phenomena, from foam dynamics to microswimmer propulsion. We show here that if a Marangoni flow of soluble surfactants is confined laterally, the flow forms an inertial surface jet. A full picture of the flows on the surface is exhibited, and the velocity profile of the jet is predicted analytically, and is successfully compared with the experimental measurements. Moreover, this straight jet eventually destabilizes into meanders. A quantitative comparison between the theory and our experimental observations yields a very good agreement in terms of critical wavelengths. The characterization and understanding of the 2D flows generated by confined Marangoni spreading is a first step to understand the role of inertial effects in the Marangoni flows with and without confinement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom