z-logo
open-access-imgOpen Access
Mechanistic insights into Smiles rearrangement. Focus on π–π stacking interactions along the radical cascade
Author(s) -
Hassan Khartabil,
Ludovic Doudet,
Ingrid AllartSimon,
Miguel PonceVargas,
Stéphane Gérard,
Éric Hé
Publication year - 2020
Publication title -
organic and biomolecular chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.923
H-Index - 146
eISSN - 1477-0539
pISSN - 1477-0520
DOI - 10.1039/d0ob01511c
Subject(s) - stacking , cascade , smiles rearrangement , focus (optics) , chemistry , physics , stereochemistry , optics , organic chemistry , chromatography
The synthesis of new arene and heteroarene scaffolds of therapeutic interest has generated a renewed interest in the domino radical cyclisation-Smiles. In this work we present a detailed mechanistic investigation of the radical version of a cascade involving a desulfonative Smiles rearrangement on an aromatic ring bearing a sulfonamide linker. Competing routes have been explored to characterize the molecular mechanism of the studied reaction. The knowledge gained from previous experimental observations is explained through the energy profile obtained by means of quantum mechanical calculations. This study answers questions about the rate determining step and the type of mechanism involved (two-step or concerted). Supplementary rate constant calculations as well as quantum molecular dynamics support experimental observations. An IGM-δg analysis performed along the reaction path unveils and quantifies an intramolecular π-π stacking interaction accelerating the reaction. This novel post processing IGM-δg tool based on the electron density, turns out to be useful to monitor and quantify specific intramolecular weak interactions along a reaction path from wave functions. From this mechanistic investigation it turns out that Smiles rearrangement here takes place in two steps rather than in a direct intramolecular radical substitution. Furthermore, we show that chain length effects must be taken into account in the functionalization of new sulfonylated derivatives subjected to this radical cascade, given their influence in the reaction rate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom