z-logo
open-access-imgOpen Access
Simulating facet-dependent aggregation and assembly of distributions of polyhedral nanoparticles
Author(s) -
George Opletal,
Shery L. Y. Chang,
Amanda S. Barnard
Publication year - 2020
Publication title -
nanoscale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.038
H-Index - 224
eISSN - 2040-3372
pISSN - 2040-3364
DOI - 10.1039/d0nr03470c
Subject(s) - facet (psychology) , materials science , nanoparticle , nanotechnology , chemical engineering , engineering , psychology , social psychology , personality , big five personality traits
Coarse-grained molecular dynamics simulations of diamond nanoparticles were performed to investigate the effects of size polydispersity on three polyhedral shapes chosen to span a diverse space of surface interactions. It was found that the resulting self-assembly was size dependent as the simulations were quenched, with the largest nanoparticles providing a clustered scaffold for subsequent smaller nanoparticle assembly. Additionally, facet-facet interactions were dominated by the {111} surface and the resulting aggregate was dominated by meso-sized porosity for monodisperse systems, broadening to larger diameters for polydisperse systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom