Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles
Author(s) -
Gabriel C. Lavorato,
Aldo A. Rubert,
Yutao Xing,
Raja Das,
Joshua Robles,
F. J. Litterst,
E. BaggioSaitovitch,
ManhHuong Phan,
H. Srikanth,
Carolina Vericat,
Mariano H. Fonticelli
Publication year - 2020
Publication title -
nanoscale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.038
H-Index - 224
eISSN - 2040-3372
pISSN - 2040-3364
DOI - 10.1039/d0nr02069a
Subject(s) - magnetite , magnetite nanoparticles , stoichiometry , coating , nanoparticle , chemical engineering , nanostructure , shell (structure) , magnetic core , materials science , magnetic nanoparticles , nanotechnology , chemistry , metallurgy , composite material , physics , engineering , quantum mechanics , electromagnetic coil
Magnetite (Fe3O4) nanoparticles are one of the most studied nanomaterials for different nanotechnological and biomedical applications. However, Fe3O4 nanomaterials gradually oxidize to maghemite (γ-Fe2O3) under conventional environmental conditions leading to changes in their functional properties that determine their performance in many applications. Here we propose a novel strategy to control the surface chemistry of monodisperse 12 nm magnetite nanoparticles by means of a 3 nm-thick Zn-ferrite epitaxial coating in core/shell nanostructures. We have carried out a combined Mössbauer spectroscopy, dc magnetometry, X-ray photoelectron spectroscopy and spatially resolved electron energy loss spectroscopy study on iron oxide and Fe3O4/Zn0.6Fe2.4O4 core/shell nanoparticles aged under ambient conditions for 6 months. Our results reveal that while the aged iron oxide nanoparticles consist of a mixture of γ-Fe2O3 and Fe3O4, the Zn-ferrite-coating preserves a highly stoichiometric Fe3O4 core. Therefore, the aged core/shell nanoparticles present a sharp Verwey transition, an increased saturation magnetization and the possibility of tuning the effective anisotropy through exchange-coupling at the core/shell interface. The inhibition of the oxidation of the Fe3O4 cores can be accounted for in terms of the chemical nature of the shell layer and an epitaxial crystal symmetry matching between the core and the shell.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom