Insights into the antiproliferative mechanism of (C^N)-chelated half-sandwich iridium complexes
Author(s) -
Robin Ramos,
Jérémy M. Zimbron,
Serge Thorimbert,
LiseMarie Chamoreau,
Annie Munier,
Candice Botuha,
Anthi Karaı̈skou,
Michèle Salmain,
Joëlle SobczakThépot
Publication year - 2020
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/d0dt03414b
Subject(s) - iridium , hydrogen peroxide , chelation , hela , chemistry , intracellular , apoptosis , mechanism (biology) , cell , catalysis , biochemistry , inorganic chemistry , philosophy , epistemology
Transition metal-based anticancer compounds, as an alternative to platinum derivatives, are raising scientific interest as they may present distinct although poorly understood mechanisms of action. We used a structure-activity relationship-based methodology to investigate the chemical and biological features of a series of ten (C^N)-chelated half-sandwich iridiumIII complexes of the general formula [IrCp*(phox)Cl], where (phox) is a 2-phenyloxazoline ligand forming a 5-membered metallacycle. This series of compounds undergoes a fast exchange of their chlorido ligand once solubilised in DMSO. They were cytotoxic to HeLa cells with IC50 values in the micromolar range and induced a rapid activation of caspase-3, an apoptosis marker. In vitro, the oxidative power of all the complexes towards NADH was highlighted but only the complexes bearing substituents on the oxazoline ring were able to produce H2O2 at the micromolar range. However, we demonstrated using a powerful HyPer protein redox sensor-based flow cytometry assay that most complexes rapidly raised intracellular levels of H2O2. Hence, this study shows that oxidative stress can partly explain the cytotoxicity of these complexes on the HeLa cell line and gives a first entry to their mechanism of action.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom