Chemical sensing with Au and Ag nanoparticles
Author(s) -
Verónica MontesGarcía,
Marco Squillaci,
Marta DiezCastellnou,
Quy K. Ong,
Francesco Stellacci,
Paolo Samorı́
Publication year - 2020
Publication title -
chemical society reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.598
H-Index - 513
eISSN - 1460-4744
pISSN - 0306-0012
DOI - 10.1039/d0cs01112f
Subject(s) - nanoparticle , nanotechnology , chemistry , materials science
Noble metal nanoparticles (NPs) are ideal scaffolds for the fabrication of sensing devices because of their high surface-to-volume ratio combined with their unique optical and electrical properties which are extremely sensitive to changes in the environment. Such characteristics guarantee high sensitivity in sensing processes. Metal NPs can be decorated with ad hoc molecular building blocks which can act as receptors of specific analytes. By pursuing this strategy, and by taking full advantage of the specificity of supramolecular recognition events, highly selective sensing devices can be fabricated. Besides, noble metal NPs can also be a pivotal element for the fabrication of chemical nose/tongue sensors to target complex mixtures of analytes. This review highlights the most enlightening strategies developed during the last decade, towards the fabrication of chemical sensors with either optical or electrical readout combining high sensitivity and selectivity, along with fast response and full reversibility, with special attention to approaches that enable efficient environmental and health monitoring.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom