z-logo
open-access-imgOpen Access
Structure and sum-frequency generation spectra of water on neutral hydroxylated silica surfaces
Author(s) -
Konstantin S. Smirnov
Publication year - 2021
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d0cp06465c
Subject(s) - spectral line , chemistry , materials science , physics , astronomy
Structural organization and vibrational sum-frequency generation (VSFG) spectra of water on crystalline and amorphous neutral silica surfaces were investigated by classical molecular dynamics simulations. The liquid phase represented with neat water and 1 M NaCl solution was analysed in terms of bonded interfacial layer (BIL), diffuse layer (DL) and bulk region. The simulations show that the structure of BIL depends on the surface morphology and density of surface OH groups. The water-silanol H-bond network and BIL structure are mainly insensitive to the presence of ions in the liquid phase. Molecules in DL of SiO 2 /neat water interfaces preferentially orient their OH bonds towards the surfaces. This effect is directly related to an effective negative charge of formally neutral surfaces. Ions of the electrolyte solution affect the intermolecular structure in DL by screening the surface electric field and by the chaotropic effect. Calculated phase-sensitive VSFG (Im[χ (2) ]) spectrum of BIL features low-frequency negative and high-frequency positive bands. Characteristics of the positive band reflect the strength of water-surface interactions and surface crystallinity, while the position and shape of the negative band are common to all interfaces. The Im[χ (2) ] spectrum of DL is dominated by a contribution from the third-order χ (3) susceptibility with the sign of the contribution directly related to the sign of electrostatic potential in the interfacial region. The DL spectrum is strongly affected by the presence of solvated ions. The computed intensity and Im[χ (2) ] spectra of the amorphous silica/NaCl solution interface are in a good agreement with the conventional and phase-sensitive experimental VSFG spectra of fused SiO 2 /water system at low pH, in contrast to the spectra of the amorphous silica/neat water interface. Origins of the discrepancy are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom