Glassy GaS: transparent and unusually rigid thin films for visible to mid-IR memory applications
Author(s) -
Andrey Tverjanovich,
Maxim Khomenko,
Sergei Bereznev,
Daniele Fontanari,
Anton Sokolov,
Takeshi Usuki,
Koji Ohara,
David Le Coq,
P. Masselin,
Е. Бычков
Publication year - 2020
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d0cp04697c
Subject(s) - materials science , thin film , optoelectronics , nanotechnology
Phase-change materials based on tellurides are widely used for optical storage (DVD and Blu-ray disks), non-volatile random access memories and for development of neuromorphic computing. Narrow-gap tellurides are intrinsically limited in the telecom spectral window, where materials having a wider gap are needed. Here we show that gallium sulfide GaS thin films prepared by pulsed laser deposition reveal good transparency from the visible to the mid-IR spectral range with optical gap Eg = 2.34 eV, high refractive index nR = 2.50 over the 0.8 ≤ λ ≤ 2.5 μm range and, unlike canonical chalcogenide glasses, the absence of photo-structural transformations with a laser-induced peak power density damage threshold above 1.4 TW cm-2 at 780 nm. The origin of the excellent damage threshold under a high-power laser and UV light irradiation resides in the rigid tetrahedral structure of vitreous GaS studied by high-energy X-ray diffraction and Raman spectroscopy and supported by first-principles simulations. The average local coordination number appears to be m = 3.44, well above the optimal connectivity, 2.4 ≤ m ≤ 2.7, and the total volume of microscopic voids and cavities is 34.4%, that is, lower than for the vast majority of binary sulfide glasses. The glass-crystal phase transition in gallium sulfide thin films may be accompanied by a drastic change in the nonlinear optical properties, opening up a new dimension for memory applications in the visible to mid-IR spectral ranges.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom