Exploiting hexafluoroisopropanol (HFIP) in Lewis and Brønsted acid-catalyzed reactions
Author(s) -
Valentyn Pozhydaiev,
M. Power,
Vincent Gandon,
Joseph Moran,
David Lebœuf
Publication year - 2020
Publication title -
chemical communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.837
H-Index - 333
eISSN - 1364-548X
pISSN - 1359-7345
DOI - 10.1039/d0cc05194b
Subject(s) - catalysis , brønsted–lowry acid–base theory , solvent , lewis acids and bases , chemistry , combinatorial chemistry , organic chemistry
Hexafluoroisopropanol (HFIP) is a solvent with unique properties that has recently gained attention for promoting a wide range of challenging chemical reactions. It was initially believed that HFIP was almost exclusively involved in the stabilization of cationic intermediates, owing to its high polarity and low nucleophilicity. However, in many cases, the mechanism of action of HFIP appears to be more complex. Recent findings reveal that many Lewis and Brønsted acid-catalyzed transformations conducted in HFIP additionally involve cooperation between the catalyst and HFIP hydrogen-bond clusters, akin to Lewis- or Brønsted acid-assisted-Brønsted acid catalysis. This feature article showcases the remarkable versatility of HFIP in Lewis and Brønsted acid-catalyzed reactions, with an emphasis on examples yielding mechanistic insight.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom