QuEChERS: a simple extraction for monitoring quaternary ammonium biocide pollution in soils and antimicrobial resistance
Author(s) -
A. Ruth Godfrey,
Rachel Townsend,
Claire Desbrow,
Celeste Felion
Publication year - 2020
Publication title -
analytical methods
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.615
H-Index - 67
eISSN - 1759-9679
pISSN - 1759-9660
DOI - 10.1039/d0ay01324b
Subject(s) - quechers , biocide , extraction (chemistry) , environmental science , environmental pollution , wastewater , pollution , pulp and paper industry , waste management , environmental chemistry , environmental engineering , chemistry , chromatography , environmental protection , engineering , pesticide , organic chemistry , ecology , pesticide residue , biology , agronomy
Quaternary ammonium compounds (QACs) are broad-spectrum disinfectants used in a range of everyday materials. Their high usage rates, limited regulation and reporting has meant their environmental release is largely uncontrolled and impact unknown. With links to antimicrobial resistance (AMR) and adsorption to wastewater solids (that are recycled), there is a need for more controlled disposal measures and monitoring. These environmental matrices are highly complex requiring methods that are often laborious and costly to undertake. Using a robust quantitative reversed-phase LC-MS/MS method, we have shown that an 'off the shelf' QuEChERS product can reliably extract (<10% RSD) aromatic and aliphatic QACs anticipated within municipal, industrial and agricultural waste from water and soil, with reduced matrix effects of 95.7-104.4% for recoveries of up to 53% from soil when combined with extract dilution. Therefore, unlike current literature, this work has shown that, with minimal development, the QuEChERS product can provide a rapid, effective and low cost preparation for quantifying QAC pollution and monitoring AMR.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom