z-logo
open-access-imgOpen Access
Finger-like membrane protrusions are favored by heterogeneities in the actin network
Author(s) -
Shachar Gat,
Camille Simon,
Clément Campillo,
Anne BernheimGroswasser,
Cécile Sykes
Publication year - 2020
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/c9sm02444a
Subject(s) - filopodia , actin , membrane , branching (polymer chemistry) , polymerization , biophysics , conical surface , dendritic filopodia , materials science , microbiology and biotechnology , chemistry , biology , dendritic spine , polymer , composite material , neuroscience , biochemistry , hippocampal formation
Finger-like protrusions in cells are mostly generated by an active actin cytoskeleton pushing against the cell membrane. Conventional filopodia, localized at the leading edge of the cells, are long and thin protrusions composed of parallel actin filaments that emanate from a branched actin network. In contrast, dendritic filopodia, precursors of dendritic spines in neurons, are entirely filled in with a branched actin network. Here, we investigate in vitro how the dynamics of branched actin structures, polymerized at a membrane surface, trigger the formation of both protrusion types. Using supported bilayers and liposomes, we show that a decrease in the amount of activation sites at the membrane surface leads to the appearance of heterogeneities in the actin network coverage. Such heterogeneities promote the formation of membrane protrusions, and the size of heterogeneity patches matches the one of the protrusion base. Protrusion shape, cylindrical or conical, directly correlates with the absence or the presence of actin branches, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom