z-logo
open-access-imgOpen Access
Actin shells control buckling and wrinkling of biomembranes
Author(s) -
Rémy Kusters,
Camille Simon,
Rogério Lopes dos Santos,
Valentina Caorsi,
Sangsong Wu,
JeanFrançois Joanny,
Pierre Sens,
Cécile Sykes
Publication year - 2019
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/c9sm01902b
Subject(s) - buckling , actin , compression (physics) , biophysics , membrane , materials science , chemistry , composite material , biology , biochemistry
Global changes of cell shape under mechanical or osmotic external stresses are mostly controlled by the mechanics of the cortical actin cytoskeleton underlying the cell membrane. Some aspects of this process can be recapitulated in vitro on reconstituted actin-and-membrane systems. In this paper, we investigate how the mechanical properties of a branched actin network shell, polymerized at the surface of a liposome, control membrane shape when the volume is reduced. We observe a variety of membrane shapes depending on the actin thickness. Thin shells undergo buckling, characterized by a cup-shape deformation of the membrane that coincides with the one of the actin network. Thick shells produce membrane wrinkles, but do not deform their outer layer. For intermediate micrometer-thick shells, wrinkling of the membrane is observed, and the actin layer is slightly deformed. Confronting our experimental results with a theoretical description, we determine the transition between buckling and wrinkling, which depends on the thickness of the actin shell and the size of the liposome. We thus unveil the generic mechanism by which biomembranes are able to accommodate their shape against mechanical compression, through thickness adaptation of their cortical cytoskeleton.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom