Deeper insight into protease-sensitive “covalent-assembly” fluorescent probes for practical biosensing applications
Author(s) -
Kévin Renault,
Sylvain Debieu,
JeanAlexandre Richard,
Anthony Romieu
Publication year - 2019
Publication title -
organic and biomolecular chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.923
H-Index - 146
eISSN - 1477-0539
pISSN - 1477-0520
DOI - 10.1039/c9ob01773a
Subject(s) - chemistry , covalent bond , moiety , fluorescence , biosensor , rational design , combinatorial chemistry , nanotechnology , förster resonance energy transfer , protease , acceptor , stereochemistry , biochemistry , enzyme , organic chemistry , materials science , physics , quantum mechanics , condensed matter physics
We report a rational and systematic study devoted to the structural optimisation of a novel class of protease-sensitive fluorescent probes that we recently reported (S. Debieu and A. Romieu, Org. Biomol. Chem., 2017, 15, 2575-2584), based on the "covalent-assembly" strategy and using the targeted enzyme penicillin G acylase as a model protease to build a fluorescent pyronin dye by triggering a biocompatible domino cyclisation-aromatisation reaction. The aim is to identify ad hoc probe candidate(s) that might combine fast/reliable fluorogenic "turn-on" response, full stability in complex biological media and ability to release a second molecule of interest (drug or second fluorescent reporter), for applications in disease diagnosis and therapy. We base our strategy on screening a set of active methylene compounds (C-nucleophiles) to convert the parent probe to various pyronin caged precursors bearing Michael acceptor moieties of differing reactivities. In vitro stability and fluorescent enzymatic assays combined with HPLC-fluorescence analyses provide data useful for defining the most appropriate structural features for these fluorogenic scaffolds depending on the specifications inherent to biological application (from biosensing to theranostics) for which they will be used.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom