Exploiting dCas9 fusion proteins for dynamic assembly of synthetic metabolons
Author(s) -
Emily A. Berckman,
Wilfred Chen
Publication year - 2019
Publication title -
chemical communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.837
H-Index - 333
eISSN - 1364-548X
pISSN - 1359-7345
DOI - 10.1039/c9cc04002a
Subject(s) - cellulosome , fusion , rna , chemistry , fusion protein , dna , computational biology , biophysics , biological system , microbiology and biotechnology , biochemistry , biology , recombinant dna , linguistics , philosophy , gene , cellulose , clostridium thermocellum , cellulase
Here we reported a new strategy to construct synthetic metabolons using dCas9-guided assembly. Three orthogonal dCas9 proteins were exploited to guide the independent and site-specific assembly of their fusion partners onto a single DNA scaffold. This new platform was applied towards the construction of a two-component cellulosome. Because of the superior binding affinity, the resulting structures exhibited both improved assembly and reducing sugar production. Conditional enzyme assembly was made possible by utilizing toehold-gated sgRNA (thgRNA), which blocks cellulosome formation until the spacer region is unblocked by a RNA trigger. This platform is highly modular owing to the ease of target synthesis, combinations of possible Cas9-fusion arrangements, and expansion to other metabolic pathways.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom