z-logo
open-access-imgOpen Access
Big-data and machine learning to revamp computational toxicology and its use in risk assessment
Author(s) -
Thomas Luechtefeld,
Craig Rowlands,
Thomas Härtung
Publication year - 2018
Publication title -
toxicology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.709
H-Index - 31
eISSN - 2045-4538
pISSN - 2045-452X
DOI - 10.1039/c8tx00051d
Subject(s) - big data , computer science , benchmark (surveying) , machine learning , computational model , artificial intelligence , skin sensitization , data science , risk assessment , strengths and weaknesses , risk analysis (engineering) , data mining , sensitization , medicine , philosophy , computer security , geodesy , epistemology , immunology , geography
The creation of large toxicological databases and advances in machine-learning techniques have empowered computational approaches in toxicology. Work with these large databases based on regulatory data has allowed reproducibility assessment of animal models, which highlight weaknesses in traditional in vivo methods. This should lower the bars for the introduction of new approaches and represents a benchmark that is achievable for any alternative method validated against these methods. Quantitative Structure Activity Relationships (QSAR) models for skin sensitization, eye irritation, and other human health hazards based on these big databases, however, also have made apparent some of the challenges facing computational modeling, including validation challenges, model interpretation issues, and model selection issues. A first implementation of machine learning-based predictions termed REACH across achieved unprecedented sensitivities of >80% with specificities >70% in predicting the six most common acute and topical hazards covering about two thirds of the chemical universe. While this is awaiting formal validation, it demonstrates the new quality introduced by big data and modern data-mining technologies. The rapid increase in the diversity and number of computational models, as well as the data they are based on, create challenges and opportunities for the use of computational methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom