Reliable seawater battery anode: controlled sodium nucleationviadeactivation of the current collector surface
Author(s) -
Do Hyeong Kim,
Hong Kyw Choi,
Dae Yeon Hwang,
Jaehyun Park,
KeunSoo Kim,
Seokhoon Ahn,
Youngsik Kim,
Sang Kyu Kwak,
YoungJun Yu,
Seok Ju Kang
Publication year - 2018
Publication title -
journal of materials chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.637
H-Index - 212
eISSN - 2050-7488
pISSN - 2050-7496
DOI - 10.1039/c8ta07610c
Subject(s) - seawater , anode , battery (electricity) , current (fluid) , nucleation , current collector , sodium , materials science , environmental science , chemical engineering , chemistry , thermodynamics , physics , oceanography , metallurgy , engineering , geology , electrode , power (physics)
Seawater battery, which consists of a Na metal anode and a seawater cathode, has highly attractive features because of its eco-friendliness in use of seawater and cost-effectiveness in the use of Na, the 6th most abundant element of the Earth's crust. Herein, we demonstrate a reliable Na metal anode for the seawater battery by covering the Cu current collector with a graphene monolayer. The surface of the chemically uniform graphene-coated current collector facilitates control of the nucleation rate of surficial Na metal at the initial stage and enhances the coulombic efficiency in current collector|separator|Na metal cells by lowering the nucleation and plating potentials. Further deliberate modification of the graphene surface by using O2 plasma and thermal treatments supports the significance of the homogeneity of the interface of the current collector. Problematically, heterogeneous Cu surfaces covered with islands of oxide layers significantly altered the surface morphology of plated Na metal and consequently resulted in the decrease in electrochemical performance due to the impeding effect on Na ion diffusion near the current collector surface. Through successful implantation of the graphene-coated Cu current collector as an anode in the seawater battery, the battery performance drastically improved, which was confirmed by monitoring the discharge/charge performance and durability of LED lighting.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom