z-logo
open-access-imgOpen Access
Metastable and nanosize cation-disordered rocksalt-type oxides: revisit of stoichiometric LiMnO2 and NaMnO2
Author(s) -
Takahito Sato,
Kei Sato,
Wenwen Zhao,
Yoshio Kajiya,
Naoaki Yabuuchi
Publication year - 2018
Publication title -
journal of materials chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.637
H-Index - 212
eISSN - 2050-7488
pISSN - 2050-7496
DOI - 10.1039/c8ta03667e
Subject(s) - stoichiometry , metastability , materials science , crystallography , type (biology) , structural type , structure type , inorganic chemistry , chemistry , crystal structure , ecology , organic chemistry , biology
Stoichiometric LiMnO2 and NaMnO2 with a cation-disordered rocksalt-type structure as metastable polymorphs were successfully prepared by mechanical milling. Although cation-disordered rocksalt phases with a stoichiometric composition (Li : Mn molar ratio = 1 : 1) are expected to be electrochemically less active, both samples show superior performance as electrode materials when compared with thermodynamically stable layered phases in Li/Na cells. Both metastable samples deliver large reversible capacities, which correspond to >80% of their theoretical capacities, with relatively small polarization on the basis of reversible Mn3+/Mn4+ redox. Moreover, for rocksalt LiMnO2, the phase transition into a spinel phase is effectively suppressed compared with a thermodynamically stable phase. The electrode reversibility of NaMnO2 is also drastically improved by the use of the metastable phase with good capacity retention. Metastable phases with unique nanostructures open a new path for the design of advanced electrode materials with high energy density, and thus a broad impact is anticipated for rechargeable Li/Na battery applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom