Graphene oxide-branched polyethylenimine foams for efficient removal of toxic cations from water
Author(s) -
Dawid Pakulski,
Włodzimierz Czepa,
Samanta Witomska,
Alessandro Aliprandi,
Piotr Pawluć,
Violetta Patroniak,
Artur Ciesielski,
Paolo Samorı́
Publication year - 2018
Publication title -
journal of materials chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.637
H-Index - 212
eISSN - 2050-7488
pISSN - 2050-7496
DOI - 10.1039/c8ta01622d
Subject(s) - polyethylenimine , graphene , oxide , chemical engineering , materials science , graphene foam , metal ions in aqueous solution , metal , pervious concrete , porosity , inorganic chemistry , graphene oxide paper , nanotechnology , chemistry , composite material , metallurgy , transfection , biochemistry , cement , engineering , gene
Highly porous foams based on graphene oxide functionalized with polyethylenimine are generated and used with unprecedented efficiency for adsorbing heavy metal ions. A multiscale analysis of the GO–BPEI nanocomposite provided evidence for the covalent grafting of BPEI on GO and the formation of low crystalline porous foams. The uptake experiments revealed that the GO–BPEI's adsorption of toxic cations is strongly dependent on the pH in range from 2 to 10, as a result of the different interactions at the supramolecular level between the metal ions and the GO–BPEI foam. The maximum uptake capacities for Cu(II), Cd(II) and Pb(II) are achieved at pH = 5 and exhibit values as high as 1096, 2051 and 3390 mg g−1, respectively, being ca. over 20 times greater than standard sorbents like activated carbon. The GO–BPEI composite can be easily regenerated as proven by performing adsorption cycles. Also, the thermodynamic parameters including standard Gibbs free energy (ΔGo), the enthalpy change (ΔHo) and entropy change (ΔSo) revealed the exothermic and spontaneous nature of the adsorption process.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom