Pairing-up viologen cations and dications: a microscopic investigation of van der Waals interactions
Author(s) -
Christophe Gourlaouen,
Sergi Vela,
Sylvie Choua,
Mathilde Berville,
Jennifer A. Wytko,
Jean Weiss,
Vincent Robert
Publication year - 2018
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c8cp04543g
Subject(s) - polarizability , van der waals force , pairing , chemistry , chemical physics , coulomb , van der waals strain , computational chemistry , viologen , van der waals radius , condensed matter physics , physics , molecule , quantum mechanics , organic chemistry , electron , superconductivity
The microscopic origin of van der Waals- and magnetic-interactions in 4,4' methyl viologen cation-based units (MV+˙ and MV2+) was inspected using wave function (variational DDCI and perturbative MP2, CASPT2) and density functional theory (DFT) calculations. The analysis deepens the comprehension of the magnetic behavior of experimental bis-viologen cyclophanes ([CYC]2(+˙)), in which the MV+˙ units are connected through alkyl linkers of different lengths. The formation of the so-called long-multicenter bonds in such radical dimers, responsible for the quenching of the magnetic response, was analyzed in [MV2]2(+˙). Dynamical correlation effects, accessible from second-order perturbation corrections, were decisive in observing a bonding regime characterized by an equilibrium distance of 3.3 Å and a 45 kJ mol-1 dissociation energy. At larger intermolecular distances, our calculations on [MV2]2(+˙) indicate that the singlet and triplet states are energetically competing (i.e. weak exchange interactions, JAB). Despite the absence of any clear bonding regime at the MP2 level, the puzzling association of two di-cations into [MV2]4+ is anticipated at 3.3 Å using weakly screened point charges (ε = 1.5) to account for the Coulomb interactions between the solvated subunits. The main conclusion is that both dispersion interactions and environment effects are required to overcome the Coulomb repulsion associated with doubly-charged species. All these data provide some complementary insights into the nature and amplitude of interactions between cation and dication units, and their relevance in various experimental manifestations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom