z-logo
open-access-imgOpen Access
Design concepts in absorbance optical systems for analytical ultracentrifugation
Author(s) -
Joseph Pearson,
Marcel Hofstetter,
T. Dekorsy,
Michael Totzeck,
Helmut Cölfen
Publication year - 2018
Publication title -
the analyst
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.998
H-Index - 153
eISSN - 1364-5528
pISSN - 0003-2654
DOI - 10.1039/c8an00706c
Subject(s) - analytical ultracentrifugation , ultracentrifuge , absorbance , range (aeronautics) , chemistry , chromatography , nanotechnology , materials science , composite material
Analytical ultracentrifugation is a powerful technique for analyzing particles in solution, and has proved valuable for a wide range of applications in chemistry, biochemistry and material sciences for many years. The field is presently seeing a resurgence of instrument development from commercial and academic groups. To date, no modern optical modeling techniques have ever been applied to the basic imaging properties of the optical system in analytical ultracentrifugation. In this manuscript we provide a contextual framework for the application of such techniques, including an overview of the essential optical principles. The existing commercial and open source detection systems are evaluated for imaging performance, highlighting the limitations of chromatic aberration for broadband acquisitions. These results are the inspiration for a new mirror-based design, free of chromatic aberration. Our findings present a path forward for continued development in imaging and detector technology, where improved data quality will now push the limits of detection and resolution of analytical ultracentrifugation for years to come.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom