A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation
Author(s) -
Yuchao Wang,
Canzhu Wang,
Xiangju Song,
Suresh Kumar Megarajan,
Heqing Jiang
Publication year - 2017
Publication title -
journal of materials chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.637
H-Index - 212
eISSN - 2050-7488
pISSN - 2050-7496
DOI - 10.1039/c7ta08972d
Subject(s) - nanocomposite , photothermal therapy , materials science , evaporation , nanotechnology , layer (electronics) , chemical engineering , physics , engineering , thermodynamics
Solar-driven water evaporation assisted by photothermal membranes is considered as one of the sustainable and cost-effective strategies for pure water generation and wastewater treatment. Herein, we report a facile but effective approach to improve the photothermal performance by combining 2D reduced graphene oxide (rGO) and 1D multi-walled carbon nanotubes (MWCNTs), which have different nanomorphologies. The photothermal layer can be easily deposited on different substrate materials via simple vacuum assistance. Such a composite photothermal layer shows a rough surface with a controllable nano-structure, which can thus optimize solar light harvesting. On the other hand, the formation of a loose internal porous structure and suitable wettability ensure water transport inside the photothermal layer during evaporation. The surface temperature reaches as high as 78 °C even under one sun irradiation (1 kW m−2), which is 10 °C higher than the result of pure rGO membranes. When loaded on a PVDF substrate, the rGO–MWCNT based membrane is flexible and shows an obvious improvement in the evaporation rate, about 79.0% and 8.9% higher than those of pure rGO and MWCNT membranes, respectively. The solar thermal conversion efficiency can reach up to 80.4% without any extra accessory for thermal management. Based on our results, the nanocomposite strategy is facile and effective for the development of novel photothermal membranes for high-efficiency evaporation, and contributes to the widespread application in the fields of desalination and wastewater treatment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom